Round 2:

Algebra I

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find all the 2-digit whole numbers that exactly divide 2^{40}.
2. Solve: $\frac{60}{y^{2}-36}+1=\frac{5}{y-6}$.
3. Over the set of real numbers find the domain of $\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}$, if $f(x)=\sqrt{x+2}$ and $g(x)=\frac{x}{x-6}$.

ANSWERS

(1 pt.) 1. \qquad
(2 pts.) 2. \qquad
(3 pts.) 3. \qquad
Doherty, St. Peter-Marian, Southbridge

Round 3:

Open Geometry

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

EXPRESS ALL ANSWERS IN TERMS OF π.

1. In the figure $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E divide the circle into 5 equal arcs. If the area of the circle is 64π, what is the length of arc $A B C$?

2. ABCD is a rectangle. E is the midpoint of $\overline{\mathrm{AD}}$ and F is the midpoint of $\overline{\mathrm{CD}} . \overline{\mathrm{EF}}$ is the diameter of circle O . If $\mathrm{AB}=16$ $B C=12$, find the area of circle O.

3. In circle P, chord $\overline{\mathrm{AB}}$ intersects diameter $\overline{\mathrm{CD}}$ at E and $\mathrm{PE}=3$. If $\mathrm{AE}=5$, and $\mathrm{EB}=5.4$, what is the area of circle P ?

ANSWERS (Express all answers in terms of π.)

(1 pt.) 1. \qquad
(2 pts.) 2. \qquad
(3 pts.) 3. \qquad
Assabet Valley, Bancroft, Hudson

Round 4: Logs, Exponents, and Radicals
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Simplify: $\left(9^{\frac{1}{2}}+(16)^{\frac{1}{2}}\right)^{2}$.
2. Simplify: $\log _{0.2} \sqrt{5}$.
3. Find all ordered pairs (x, y) such that:

$$
\begin{aligned}
& x+2 y+\sqrt{2 x y}=24 \text { and } \\
& x^{2}+4 y^{2}+2 x y=192 .
\end{aligned}
$$

ANSWERS
(1pt.) 1 .
(2 pts.) 2. \qquad
(3 pts.) 3. \qquad
Auburn, Shepherd Hill, Shrewsbury

Round 5: Trigonometry

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the simplified numerical value of the following quotient:

$$
\frac{\sin 10^{\circ} \cos 10^{\circ} \tan 10^{\circ} \cot 10^{\circ} \sec 10^{\circ} \csc 10^{\circ}}{\sin 20^{\circ} \cos 20^{\circ} \tan 20^{\circ} \cot 20^{\circ} \sec 20^{\circ} \csc 20^{\circ}}
$$

2. Evaluate: $\frac{\tan \frac{5 \pi}{4}-\cos \frac{5 \pi}{3}}{5 \sin \frac{\pi}{6}}$.
3. Solve for all x where $0 \leq \mathrm{x}<2 \pi$. Leave all answer(s) in terms of π. $2 \sin ^{2} x \cos ^{2} x+\sin x \cos ^{2} x-2 \sin ^{2} x-\sin x=0$.

ANSWERS
(1 pt.) 1. \qquad
(2 pts.) 2. \qquad
(3 pts.) 3. \qquad
Bartlett, Burncoat, Clinton

1. \qquad
2. \qquad
3. \qquad
4. \qquad feet
5. \qquad
6. \qquad
7.
8.
9. \qquad

School \qquad

Team \# \qquad

Student Names:

1. Find the least integer x for which $\frac{12}{x+1}$ represents an integer.
2. Simplify: $\frac{2}{2 x+3} \div\left(\frac{1}{x-1}-\frac{2 x-5}{2 x^{2}+x-3}\right)$.
3. Solve for $\mathrm{x}: \log _{27}\left(\log _{8} 512\right)=\log _{5} x$.

4. Given the four right triangles as shown on the right. $\overline{\mathrm{FB}}$ is a straight line segment. $\measuredangle C A B=30^{\circ}, \measuredangle C A D=45^{\circ}$, and $\measuredangle \mathrm{DAE}=60^{\circ}$. If $\mathrm{BC}=100$ feet, find $A F$ rounded to the nearest foot.
5. Find all real numbers x such that: $\sqrt[3]{5+\mathrm{x}}+\sqrt[3]{5-x}=1$.
6. Find all values of x for which $3^{4 x}+27=4\left(3^{2 x+1}\right)$.
7. $\overrightarrow{F C}$ and $\overrightarrow{F B}$ are tangent to circle $\mathrm{O} . \overparen{A D}=60^{\circ}, \overparen{A H}=50^{\circ}$, $\overparen{H C}=30^{\circ}, \overparen{B K}=50^{\circ}$. Find the sum of the measures of: $\measuredangle 1+\measuredangle 2+\measuredangle 3+\measuredangle 4+\measuredangle 5+\measuredangle 6+\measuredangle 7+\measuredangle 8+\measuredangle 9+\measuredangle 10$.

8. In triangle $A B C, \measuredangle C$ is a right angle. $\overline{C D}$ is an altitude. The circles centered at P and Q are inscribed in $\triangle A D C$ and $\triangle C D B$ respectively. If $A C=15$ and $B C=20$, find the length of PQ .

9. A "happy" number is defined by the following process. Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 . (For example: 23 is a happy number. The associated sequence is $23 ; 2^{2}+3^{2}=13 ; 1^{2}+3^{2}=10$; $1^{2}+0^{2}=1$.) Find all the happy numbers between 90 and 99 inclusive.

Assabet Valley, Auburn, Burncoat, Hudson, Notre Dame, Quaboag, St. John's, Westborough

March 4, 2009

Round 1: Elementary Number Theory
(1 pt.) 19 (tomato plants)
(2 pts.) 156
503_{7} or 503 (accept either
(3 pts.)
answer)
(2 pts.) $-\frac{1}{2}$ or -0.5
(3 pts.) $(8,4)$ (must include parenthesis)

Round 5: Trigonometry

(1 pt.) 1
(2 pts.) $\frac{1}{5}$ or 0.2
$0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(3 pts.) (need all 4 answers, written in terms of π, any order.)
(All answers must be written in

$$
\text { terms of } \pi \text {.) }
$$

(1pt.) $\frac{32 \pi}{5}$ or 6.4π or $6 \frac{2}{5} \pi$
(2 pts.) 25π
(3 pts.) 36π

1. -13
2. $\frac{x-1}{4}$ or $\frac{1}{4}(x-1)$
3. $5^{\frac{1}{3}}$ or $\sqrt[3]{5}$ or 1.710
4. 400 feet
5. $\pm 2 \sqrt{13}$ or ± 7.211
6. $1, \frac{1}{2}$ or 0.5 (need both answers)
7. 605 (with or without degree sign)
8. $5 \sqrt{2}$ or 7.071
9. $91,94,97$ (need all 3 answers, in any order)
10. If you plant 6 to a row and have one left over means the number of tomato plants is one more than a multiple of $6(7,13,19,25,31,37,43)$. Now divide these possibilities by 5 and see which ones give a remainder of 4 . The answer is 19 tomato plants.
11. $((812)[610]) \Rightarrow(24-430+2) \Rightarrow(2032) \Rightarrow 160-4=156$
12. $x y z_{7}=z y x_{9}$ where $x, y, z \in 0,1,2,3,4,5$, or 6 . Hence $49 x+7 y+z=81 z+9 y+x$. Rearranging: $48 x-2 y-80 z=0 \Rightarrow 24 x-y-40 z=0 \Rightarrow y=24 x-40 z$ or $y=8(3 x-5 z)$. The only value for y is 0 . Which implies $3 x-5 z=0$ or $3 x=5 z \Rightarrow x=5$ and $\mathrm{z}=3$. Therefore the number is 503_{7}.
13. $2^{4}=16,2^{5}=32,2^{6}=64$. Answer: $16,32,64$.
14. Multiply each term by $y^{2}-36$ to get $60+y^{2}-36=5 y+30$. Rearrange to get $y^{2}-5 y+6=0$. Factor and solve (or use the quadratic formula) to get $y=-1,6$. Because of the denominator $y \neq 6$, therefore $y=-1$.
15. $\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}=\frac{\sqrt{x+2}}{\frac{x}{x-6}}$, here $\mathrm{x} \neq 6$. $\frac{(x-6) \sqrt{x+2}}{x}$, here $x \neq 0$. Since $x+2 \geq 0, x \geq-2$. Answer $x \geq-2$, but $\mathrm{x} \neq 0$ or $\mathrm{x} \neq 6$.

16. The radius of the circle is 8. $\widehat{A B C}=\left(\frac{\frac{2}{5}(360)}{360}\right)(16 \pi)=\frac{32 \pi}{5}$ or 6.4π or $6 \frac{2}{5} \pi$.
17. $\mathrm{ED}=6$ and $\mathrm{DF}=8$. By the Pythagorean theorem $\mathrm{EF}=10$. Hence the radius of the circle is 5 and the area $=25 \pi$.
18. $(A E)(E B)=(D E)(E C)$ where $D E=D P+P E$ and $E C=P C-P E$. Therefore $(5)(5.4)=(R+3)(R-3)$ or $27=R^{2}-9 \Rightarrow R^{2}=36$ or $R=6$. Thus the area of the circle is 36π.
19. $\left(9^{\frac{1}{2}}+(16)^{\frac{1}{2}}\right)^{2}=(3+4)^{2}=7^{2}=49$.
20. $\log _{0.2} \sqrt{5}=\frac{\ln \sqrt{5}}{\ln \frac{1}{5}}=\frac{\ln 5^{\frac{1}{2}}}{\ln 5^{-1}}=\frac{\frac{1}{2} \ln 5}{-1 \ln 5}=-\frac{1}{2}$ or -0.5 .
21. Rearrange the first equation: $x+2 y=24-\sqrt{2 x y}$.

Square both sides: $x^{2}+4 x y+4 y^{2}=576-48 \sqrt{2 x y}+2 x y$ or $x^{2}+2 x y+4 y^{2}=576-48 \sqrt{2 x y}$.
Substituting with the second equation: $192=576-48 \sqrt{2 x y}$ or $48 \sqrt{2 x y}=384 \Rightarrow \sqrt{2 x y}=8$ or $2 x y=64$.
Substitute $\sqrt{2 x y}=8$ or $2 x y=64$ into the original equations: $x+2 y=16$ and $x^{2}+4 x y^{2}=128$.
Rearrange $x+2 y=16$ as $x=16-2 y$ and substitute into $x^{2}+4 x y^{2}=128: \quad 256-64 y+4 y^{2}+4 y^{2}=128$.
Rearrange and solve for $y: 256-64 y+4 y^{2}+4 y^{2}=128 \Rightarrow y^{2}-8 y+16=0$ or $y=4$.
Since $x=16-2 y, x=8$. Hence $(8,4)$.

Trigonometry

1. Substituting with reciprocals: $\frac{\sin 10^{\circ} \cos 10^{\circ} \tan 10^{\circ} \frac{1}{\tan 10^{\circ}} \frac{1}{\cos 10^{\circ}} \frac{1}{\sin 10^{\circ}}}{\sin 20^{\circ} \cos 20^{\circ} \tan 20^{\circ} \frac{1}{\tan 20^{\circ}} \frac{1}{\cos 20^{\circ}} \frac{1}{\sin 20^{\circ}}}=1$.
2. $\frac{\tan \frac{5 \pi}{4}-\cos \frac{5 \pi}{3}}{5 \sin \frac{\pi}{6}}=\frac{\tan \frac{\pi}{4}-\cos \frac{\pi}{3}}{5 \sin \frac{\pi}{6}}=\frac{1-\frac{1}{2}}{5\left(\frac{1}{2}\right)}=\frac{\frac{1}{2}}{5\left(\frac{1}{2}\right)}=\frac{1}{5}$ or 0.2.
\qquad
3. $\sin x\left(2 \sin x \cos ^{2} x+\cos ^{2} x-2 \sin x-\sin x\right)=0 \Rightarrow \sin x\left[\cos ^{2} x(2 \sin x+1)-1(2 \sin x+1)\right]=0 \Rightarrow$ $\sin x(2 \sin x+1)(\cos x+1)(\cos x-1)=0 \Rightarrow \sin x=0, \sin x=-\frac{1}{2}, \cos x=-1$, or $\cos x=1$.
$\Rightarrow 0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.
\qquad
4. For $\frac{12}{x+1}$ to be an integer, $x+1$ must be an integral factor of 12 . The least integral factor of 12 is -12 . Therefore $x+1=-12 \Rightarrow x=-13$.
5. $\frac{2}{2 \mathrm{x}+3} \div\left(\frac{1(2 x+3)-(2 x-5)}{(x-1)(2 x+3)}\right)=\frac{2}{2 \mathrm{x}+3}\left(\frac{(x-1)(2 x+3)}{4}\right)=\frac{x-1}{4}$ or $\frac{1}{4}(x-1)$.
6. $\log _{27}\left(\log _{8} 512\right)=\log _{5} x \Rightarrow \log _{27} 3=\log _{5} x \Rightarrow \frac{1}{3}=\log _{5} x \Rightarrow x=5^{\frac{1}{3}}$ or $\sqrt[3]{5}$ or 1.710 .
7. Let $A C=x, A D=y, A E=z$, and $A F=Q$. Then $\sin 30^{\circ}=\frac{100}{x} \Rightarrow x=\frac{100}{\sin 30^{\circ}}, \cos 45^{\circ}=\frac{x}{y} \Rightarrow$ $y=\frac{x}{\cos 45^{\circ}}, \cos 60^{\circ}=\frac{y}{z} \Rightarrow z=\frac{y}{\cos 60^{\circ}}, \cos 45^{\circ}=\frac{Q}{z} \Rightarrow Q=z \cos 45^{\circ}$. (Note each of these equations can be evaluated and used to solve the next equation.) But by combining all the equations

$$
\Rightarrow Q=z \cos 45^{\circ}=\left(\frac{y}{\cos 60^{\circ}}\right) \cos 45^{\circ}=\left(\frac{x}{\cos 45^{\circ}} \cos 60^{\circ}\right) \cos 45^{\circ}=\frac{x}{\cos 60^{\circ}}=\frac{\frac{100}{\sin 30^{\circ}}}{\cos 60^{\circ}}=400 \text { feet. }
$$

5. Let $A=\sqrt[3]{5+x}+\sqrt[3]{5-x}=1$. Then $\mathrm{A}^{3}=5+x+5-x+3(\sqrt[3]{5+x}+\sqrt[3]{5-x})(\sqrt[3]{5+x} \sqrt[3]{5-x})=1 \Rightarrow$ $10+3(1) \sqrt[3]{25-x^{2}}=1 \Rightarrow 3 \sqrt[3]{25-x^{2}}=-9 \Rightarrow \sqrt[3]{25-x^{2}}=-3 \Rightarrow 25-x^{2}=-27 \Rightarrow x^{2}=52 \Rightarrow x= \pm \sqrt{52}$ $\Rightarrow x= \pm 2 \sqrt{13}$ or ± 7.211.
6. $3^{4 x}+27=4\left(3^{2 x+1}\right) \Rightarrow 3^{4 x}-4\left(3^{2 x+1}\right)+27=0 \Rightarrow 3^{4 x}-4(3)\left(3^{2 x}\right)+27=0 \Rightarrow 3^{4 x}-12\left(3^{2 x}\right)+27 \Rightarrow$ $\left(3^{2 x}-9\right)\left(3^{2 x}-3\right)=0 \Rightarrow\left(3^{2 x}-3^{2}\right)\left(3^{2 x}-3^{1}\right)=0 \Rightarrow 3^{2 x}-3^{2}=0$ or $3^{2 x}-3^{1}=0 \Rightarrow 2 x=2$ or $2 x=1$ $\Rightarrow x=1, \frac{1}{2}$ or 0.5 .
7. Since $\overline{\mathrm{AB}}$ is a diameter, $\overparen{C K}=50^{\circ}$ and $\overparen{D B}=120^{\circ}$. Using the relationships between arcs and central angles, inscribed angles, and angles formed by lines intersecting in the exterior or interior of a circle: $\measuredangle 1=25^{\circ}, \measuredangle 2=40^{\circ}, \measuredangle 3=90^{\circ}, \measuredangle 4=125^{\circ}, \measuredangle 5=45^{\circ}, \measuredangle 6=45^{\circ}, \measuredangle 7=85^{\circ}, \measuredangle 8=50^{\circ}$, $\measuredangle 9=40^{\circ}, \measuredangle 10=60^{\circ}$. Hence $\measuredangle 1+\measuredangle 2+\measuredangle 3+\measuredangle 4+\measuredangle 5+\measuredangle 6+\measuredangle 7+\measuredangle 8+\measuredangle 9+\measuredangle 10=25^{\circ}+40^{\circ}+90^{\circ}+125^{\circ}$ $+45^{\circ}+45^{\circ}+85^{\circ}+50^{\circ}+40^{\circ}+60^{\circ}=605^{\circ}$.
8. Since $\triangle A B C$ is a right triangle with $A C=15$ and $B C=20$, Then $A B=25$. Now $(D C)(A B)=(A C)(B C)$ or $D C(25)=$ $=15(20) \Rightarrow D C=12$. Since $\triangle A D C$ is a right triangle $A C$ $=15$ and $\mathrm{DC}=12$ then $\mathrm{AD}=9$ and thus $\mathrm{BC}=16$. A formula for the area of a triangle is half the radius times the perimeter or $\mathrm{A}=\frac{1}{2} \mathrm{rp}$. In $\triangle A D C 54=\frac{1}{2} r(36)$ or $\mathrm{r}=3$
 and in $\triangle \mathrm{BCD} 96=\frac{1}{2} \mathrm{r}(48)$ or $\mathrm{r}=4$. Draw perpendiculars from P to AD at M and from Q to BD at N making $\mathrm{MN}=7$. Connecting a parallel line segment P to QN at R , makes PRNM a rectangle and $\triangle P R Q$ a right triangle. Thus $P R=7$. Since $R N=3$, then $R Q=1$. Therefore $P Q=\sqrt{50}=5 \sqrt{2}$ or 7.071 .
9. The happy numbers between 90 and 99 inclusive are: 91,94 , and 97 . The associated sequence for the happy numbers:
$91 ; 9^{2}+1^{2}=82 ; 8^{2}+2^{2}=68 ; 6^{2}+8^{2}=100 ; 1^{2}+0^{2}+0^{2}=1$.
$94 ; 9^{2}+4^{2}=97 ; 9^{2}+7^{2}=130 ; 1^{2}+3^{2}+0^{2}=10 ; 1^{2}+0^{2}=1$.
$97 ; 9^{2}+7^{2}=130 ; 1^{2}+3^{2}+0^{2}=10 ; 1^{2}+0^{2}=1$.
